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Abstract— A two-dimensional micromagnetic model is ex-

tended to support simulation of films with non-uniform

thickness. Zeeman and crystalline anisotropy energies of

each cell scale with the cell thickness, while the exchange

energy of a pair of neighbor cells scales by a weight depen-

dent on the thicknesses of both cells. The self-magnetostatic

energy is computed by scaling the moment of each cell by

its thickness, and adding a local correction to the out-of-

plane field. The calculation of the magnetostatic field for a

10 × 10 × 1 oblate spheroid is shown to be more accurate by

the non-uniform thickness model than by a uniform thick-

ness model. With the extended model a 530×130×10 nm film

in the shape of a truncated pyramid with tapering over the

15 nm nearest the edges is shown to have smaller switch-

ing field and different reversal mechanism compared with

uniform thickness films of similar size and shape.

I. Introduction

Micromagnetic simulation of thin-film devices frequently
makes use of a two-dimensional micromagnetic model. A
two-dimensional model requires less memory and less de-
manding calculations than a three-dimensional model. The
magnetization patterns computed by a two-dimensional
model can also be more easily visualized and interpreted.
So long as the variation of magnetization through the thick-
ness of a film can be neglected, two-dimensional models can
represent the magnetic behavior of thin films acceptably
well.

Any two-dimensional model is capable of solving only
a limited set of micromagnetic problems that are consis-
tent with the constraints of the model. More sophisticated
models can expand the limits of those constraints while re-
taining the two-dimensional nature of the model. In previ-
ous work [1] we considered a more sophisticated calculation
of the effective magnetostatic fields of a two-dimensional
model. Rather than computing the magnetostatic field at
a single sample point in the center of each computational
cell, we computed the average magnetostatic field over the
entire cell, using known formulas [2]. Using averaged val-
ues instead of sampled values of the magnetostatic field, we
were able to use a two-dimensional model to reproduce the
accuracy of a three-dimensional model [3] in the solution
of µMAG standard problem 2 [4].

In this paper we consider another extension of a two-
dimensional micromagnetic model as an alternative to
three-dimensional modeling. All two-dimensional models
neglect the variation of magnetization through the thick-
ness of the film. Most two-dimensional models also assume
the film has uniform thickness. In this paper we present
a simple extension of a two-dimensional model to approxi-

mate the effects of non-uniform thickness of the film. This
extension allows a two-dimensional model to be used to
simulate a broader class of devices that otherwise might
require a three-dimensional model. It can also be used to
explore the impact that thickness variations may have on
the properties of thin-film devices.

In Section II we describe the representation of variable
thickness in each of the energy terms of our two dimensional
model. Section III records the extended model’s improved
ability to represent the magnetostatic fields of an ellipsoid.
Section IV presents some simulation results indicating that
a film with a tapered edge has a significantly different re-
versal mechanism and switching field when compared with
uniform thickness films of similar size and shape.

II. Energy Terms

We began with the two-dimensional model within the
OOMMF public micromagnetic code [5] and extended the
expressions of each of its energy terms to account for a
variation in thickness from one cell to the next. In the
original model, the cells lie on a regular rectangular mesh
where each cell has dimensions ∆×∆×T . In the modified
model, each cell i has thickness Ti, or relative thickness
ti = Ti/Tmax.

Neither the applied field nor the crystalline anisotropy
field are dependent on the magnitude of magnetic moment
in the cell, so field calculations are unmodified. The Zee-
man energy and the anisotropy energy in the cell are pro-
portional to the volume of the film in that cell, so when
calculating these energy terms, the energy of cell i is scaled
by the relative thickness ti. This is a simple adjustment to
the calculation of these energy terms.

In our uniform thickness model, the total exchange en-
ergy is computed using an eight-neighbor cosine scheme [6].
In the variable thickness model, we weight the contribution
to total exchange energy from each pair of neighbor cells i
and k by the quantity w(ti, tk),

Eex =
A · Tmax

3

∑

i

m
T
i

∑

k∈nni

w(ti, tk)(mi − mk). (1)

Here A is the exchange stiffness constant, and mi =
Mi/Ms is the normalized magnetization of cell i. The
weights reflect the lesser exchange energy contribution from
cells of thickness less than Tmax. The corresponding expres-
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sion for the exchange energy density in cell i is

Eex,i =
A

3∆2
m

T
i

∑

k∈nni

w(ti, tk)

ti
(mi − mk). (2)

The choice of weighting functions must satisfy the fol-
lowing properties:

w(t1, t2) = w(t2, t1) (3)

min(t1, t2) ≤ w(t1, t2) ≤
2t1t2

t1 + t2
(4)

Our model’s representation of exchange energy assumes the
exchange energy contribution from cells i and k is the min-
imum exchange energy of any magnetization interpolation
consistent with mi and mk. The lower bound in (4) asserts
that starting with two cells of equal thickness, increasing
the thickness of one must increase the exchange energy.
The upper bound in (4) is the minimum exchange energy
among all magnetization interpolations meeting the con-
straint that m varies only along the direction from i to
k. The minimum exchange energy over all unconstrained
interpolations must be no greater.

For simulations reported in this paper, the minimum
weighting function w(t1, t2) = min(t1, t2) was used, but
other weighting functions satisfying these constraints might
also be considered.

Finally, we consider the self-magnetostatic energy of the
film. The magnetization in each cell is assumed to be uni-
form, so magnetic charges on the cell boundaries are the
sources of the magnetostatic field. The average magne-
tostatic field over each cell is computed [1]. Due to the
regular mesh, the magnetostatic field convolution integral
can be efficiently evaluated using FFT techniques.

Adapting the model to properly include cells of variable
thickness would destroy the regularity of the mesh, pre-
venting the use of efficient FFT techniques. We consider
instead a way to retain efficiency, yet reasonably approxi-
mate the effect of variable thickness on the magnetostatic
energy.

The primary effect of a reduction in the thickness of a
cell on the magnetostatic field is caused by the correspond-
ing reduction in the magnetic moment of that cell. This
suggests an adjustment to the magnetostatic field calcula-
tion that replaces Mi with tiMi as the source of magneto-
static field from cell i. In the far field, this approximation
is reasonably accurate. However, errors in the near field
produce incorrect results in an important limiting case and
need correction.

Consider a uniformly magnetized thin film of infinite ex-
tent. The correct magnetostatic field is Hd,z = −Mz ẑ out-
of-plane and Hd,xy = 0 in-plane. Assume our full thickness
model properly calculates that field. When the thickness
of the entire film is reduced to a fraction t of its origi-
nal thickness, our variable thickness model will compute
the out-of-plane magnetostatic field to be Hd,z = −tMz ẑ.
This error can be corrected if at each cell i the quantity
−(1 − ti)Mi,z is added to the out-of-plane component of

the magnetostatic field. The in-plane field is computed cor-
rectly, so any single-cell correction to the in-plane field will
increase errors. A single-cell local correction, added after
FFT calculations, does not significantly hinder efficiency.

Note the effect of this correction on the demagnetization
factors of a single calculation cell. Our original approx-
imation represents a reshaping of the cell by a rescaling
of its magnetization. Reshaping the cell should change its
demagnetizing factors. By adding the out-of-plane correc-
tion, we do change the out-of-plane demagnetizing factor,
and this change restores the property that the demagneti-
zation factors sum to 1.

III. Magnetostatic Field Errors

As a measure of the improved ability of the extended
model to represent films with non-uniform thickness, we
computed the demagnetization factors of the best repre-
sentation of a 10×10×1 oblate spheroid using the original
model (Fig. 1 A) and the extended model (Fig. 1 B). For
this spheroid the correct demagnetization factors are 0.0696
in-plane and 0.8608 out-of-plane. The calculated values are
respectively 0.1026 and 0.7947 using the uniform thickness
model, and 0.0635 and 0.8730 using the extended model.
In Fig. 1 A, the in-plane relative RMS error is 118%, com-
pared to 29.1% in Fig. 1 B. In Fig. 1 A, the out-of-plane
relative RMS error is 15%, compared to 3.6% in Fig. 1 B.
In Fig. 1 B the errors are concentrated at the edge. Within
the central region extending to a 90% radius, the in-plane
RMS error is 12.7%.

We also compared our variable thickness model to a
three-dimensional model. Our variable thickness model is
limited in its ability to accurately compute magnetostatic
fields due to approximations in the interest of efficiency.
Our three-dimensional model is also limited in its ability to
accurately compute magnetostatic fields due to its limited
discretization through the thickness of the oblate spheroid.
Our three-dimensional model requires a discretization of at
least 10 layers to obtain magnetostatic field errors compa-
rable to our variable thickness two-dimensional model, at
a cost of 10 times the memory and more than 10 times the
amount of computation.

IV. Simulation Results

To explore the effects of thickness variations at the edges
of thin films, we computed magnetization reversal curves
for two variations on µMAG standard problem 2 [4], [7].
Standard problem 2 considers magnetic reversal of a thin
film with dimensions in ratio 5× 1× 0.1 with applied fields
along the [1, 1, 1] axis. We specify the dimensions of the
film as 500 × 100 × 10 nm, and material parameters rep-
resenting Permalloy. This yields a ratio of film width to
exchange length d/lex ≈ 19. All simulations used a cell
size ∆ = 2 nm. ¿From the standard problem 2 results,
we know the long axis component of magnetization Mx

switches when the applied field magnitude µ0H is about
54.5 mT.

For comparison, we also simulated the reversal of a
Permalloy film with dimensions 530 × 130 × 10 nm. We
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B.

Fig. 1. Comparison of the in-plane magnetostatic field of a uniformly
magnetized 10×10×1 oblate spheroid as calculated by a uniform
thickness model (A) and a variable thickness model (B). Grey
scale indicates divergence of the magnetostatic field.

found for the larger film that Mx switches when µ0H is
about 44 mT. The 20% drop in the switching field is due
to the larger size and different aspect ratio of the second
film

Finally, using the extended model, we simulated the re-
versal of a film in the shape of a truncated pyramid. The
base dimensions of the film were 530× 130 nm and the top
dimensions of the film were 500 × 100 nm. The maximum
thickness of the film was 10 nm with a linear tapering to
zero thickness over the outer 15 nm of the film. Simulations
of reversal in this film found that Mx switches when µ0H is
about 37 mT. This drop of about 30% in the switching field
compared to standard problem 2 exceeds that which can
be explained by the change in film size and aspect ratio.

Examination of the reversal curves reveals clues about
the difference. Fig. 2 A shows the reversal of Mx. Fig. 2 B
shows the reversal of My. For both uniform thickness sim-
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Fig. 2. Components of average magnetization along the long in-
plane axis, Mx (A), and along the short in-plane axis, My (B),
as a function of reverse applied field magnitude, for three sim-
ulated films. The films modeled with uniform thickness exhibit
a two-stage reversal. The truncated pyramid film has only one
switching event in its reversal.

ulations, the reversal takes place in two stages, as we have
observed before [7]. The end domains switch at a small
reversed field magnitude, then at a larger applied field the
end domains propagate inwards and annihilate, complet-
ing the reversal. The two-stage reversal is most apparent
in Fig. 2 B, where My shows two discontinuities in op-
posite directions. The hysteresis loop for the film with a
truncated pyramid shape shows no evidence of such a two-
stage reversal. Simulation of the truncated pyramid with
our three-dimensional model confirmed these results.
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